skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wiles, G. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing‐season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier‐accentuated temperature trends would act to increase the variance in stand‐level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co‐occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community‐wide growth rates. These results warrant further inquiry into how climate‐induced changes in tree‐growth diversity may help stabilize future ecosystem services like forest carbon storage. 
    more » « less
  2. Abstract Reconstructing how biota have responded to fast‐paced warming events in the past can help predict their responses to rapid climate changes in the future. Here we suggest that natural communities located near glaciers are useful laboratories for this purpose as they experienced climate changes accentuated by past ice‐margin fluctuations. By reconstructing an Alaskan glacier's position over a 166‐year period and measuring the periglacial air temperatures over the last 3 years, we estimate that the adjacent temperate rainforest episodically cooled and warmed by 0.5–0.7°C/decade. These rates of change exceed most historical warming trends measured elsewhere on Earth and are comparable to the rates of climate warming predicted for the next century. The ring‐width responses of yellow‐cedar trees growing at varying distances from the ice edge illustrate the potential for using periglacial ecosystems to predict how forests may respond to rapid warming in the future. 
    more » « less